Metamath Proof Explorer


Theorem rabexf

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabexf.1 𝑥 𝐴
rabexf.2 𝐴𝑉
Assertion rabexf { 𝑥𝐴𝜑 } ∈ V

Proof

Step Hyp Ref Expression
1 rabexf.1 𝑥 𝐴
2 rabexf.2 𝐴𝑉
3 1 rabexgf ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )
4 2 3 ax-mp { 𝑥𝐴𝜑 } ∈ V