Metamath Proof Explorer
Description: Separation Scheme in terms of a restricted class abstraction.
(Contributed by NM, 23-Oct-1999)
|
|
Ref |
Expression |
|
Assertion |
rabexg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
2 |
|
ssexg |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |