Metamath Proof Explorer


Theorem rabexg

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999)

Ref Expression
Assertion rabexg ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥𝐴𝜑 } ⊆ 𝐴
2 ssexg ( ( { 𝑥𝐴𝜑 } ⊆ 𝐴𝐴𝑉 ) → { 𝑥𝐴𝜑 } ∈ V )
3 1 2 mpan ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )