Metamath Proof Explorer


Theorem rabexgf

Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis rabexgf.1 𝑥 𝐴
Assertion rabexgf ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 rabexgf.1 𝑥 𝐴
2 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 simpl ( ( 𝑥𝐴𝜑 ) → 𝑥𝐴 )
4 3 ss2abi { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝑥𝐴 }
5 1 abid2f { 𝑥𝑥𝐴 } = 𝐴
6 4 5 sseqtri { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐴
7 2 6 eqsstri { 𝑥𝐴𝜑 } ⊆ 𝐴
8 ssexg ( ( { 𝑥𝐴𝜑 } ⊆ 𝐴𝐴𝑉 ) → { 𝑥𝐴𝜑 } ∈ V )
9 7 8 mpan ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )