Metamath Proof Explorer


Theorem rabexgfGS

Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypothesis rabexgfGS.1 𝑥 𝐴
Assertion rabexgfGS ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 rabexgfGS.1 𝑥 𝐴
2 nfrab1 𝑥 { 𝑥𝐴𝜑 }
3 2 1 dfss2f ( { 𝑥𝐴𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝐴𝜑 } → 𝑥𝐴 ) )
4 rabidim1 ( 𝑥 ∈ { 𝑥𝐴𝜑 } → 𝑥𝐴 )
5 3 4 mpgbir { 𝑥𝐴𝜑 } ⊆ 𝐴
6 elex ( 𝐴𝑉𝐴 ∈ V )
7 ssexg ( ( { 𝑥𝐴𝜑 } ⊆ 𝐴𝐴 ∈ V ) → { 𝑥𝐴𝜑 } ∈ V )
8 5 6 7 sylancr ( 𝐴𝑉 → { 𝑥𝐴𝜑 } ∈ V )