Metamath Proof Explorer


Theorem rabfmpunirn

Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016)

Ref Expression
Hypotheses rabfmpunirn.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝑊𝜑 } )
rabfmpunirn.2 𝑊 ∈ V
rabfmpunirn.3 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
Assertion rabfmpunirn ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) )

Proof

Step Hyp Ref Expression
1 rabfmpunirn.1 𝐹 = ( 𝑥𝑉 ↦ { 𝑦𝑊𝜑 } )
2 rabfmpunirn.2 𝑊 ∈ V
3 rabfmpunirn.3 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
4 df-rab { 𝑦𝑊𝜑 } = { 𝑦 ∣ ( 𝑦𝑊𝜑 ) }
5 4 mpteq2i ( 𝑥𝑉 ↦ { 𝑦𝑊𝜑 } ) = ( 𝑥𝑉 ↦ { 𝑦 ∣ ( 𝑦𝑊𝜑 ) } )
6 1 5 eqtri 𝐹 = ( 𝑥𝑉 ↦ { 𝑦 ∣ ( 𝑦𝑊𝜑 ) } )
7 2 zfausab { 𝑦 ∣ ( 𝑦𝑊𝜑 ) } ∈ V
8 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑊𝐵𝑊 ) )
9 8 3 anbi12d ( 𝑦 = 𝐵 → ( ( 𝑦𝑊𝜑 ) ↔ ( 𝐵𝑊𝜓 ) ) )
10 6 7 9 abfmpunirn ( 𝐵 ran 𝐹 ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) ) )
11 elex ( 𝐵𝑊𝐵 ∈ V )
12 11 adantr ( ( 𝐵𝑊𝜓 ) → 𝐵 ∈ V )
13 12 rexlimivw ( ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) → 𝐵 ∈ V )
14 13 pm4.71ri ( ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) ) )
15 10 14 bitr4i ( 𝐵 ran 𝐹 ↔ ∃ 𝑥𝑉 ( 𝐵𝑊𝜓 ) )