Step |
Hyp |
Ref |
Expression |
1 |
|
rabfmpunirn.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑊 ∣ 𝜑 } ) |
2 |
|
rabfmpunirn.2 |
⊢ 𝑊 ∈ V |
3 |
|
rabfmpunirn.3 |
⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
df-rab |
⊢ { 𝑦 ∈ 𝑊 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝑊 ∧ 𝜑 ) } |
5 |
4
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑊 ∣ 𝜑 } ) = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∣ ( 𝑦 ∈ 𝑊 ∧ 𝜑 ) } ) |
6 |
1 5
|
eqtri |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∣ ( 𝑦 ∈ 𝑊 ∧ 𝜑 ) } ) |
7 |
2
|
zfausab |
⊢ { 𝑦 ∣ ( 𝑦 ∈ 𝑊 ∧ 𝜑 ) } ∈ V |
8 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) |
9 |
8 3
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ∈ 𝑊 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) ) ) |
10 |
6 7 9
|
abfmpunirn |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥 ∈ 𝑉 ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) ) ) |
11 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) → 𝐵 ∈ V ) |
13 |
12
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) → 𝐵 ∈ V ) |
14 |
13
|
pm4.71ri |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) ↔ ( 𝐵 ∈ V ∧ ∃ 𝑥 ∈ 𝑉 ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) ) ) |
15 |
10 14
|
bitr4i |
⊢ ( 𝐵 ∈ ∪ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐵 ∈ 𝑊 ∧ 𝜓 ) ) |