Step |
Hyp |
Ref |
Expression |
1 |
|
rabfodom.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝜒 ↔ 𝜓 ) ) |
2 |
|
rabfodom.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
rabfodom.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
4 |
|
vex |
⊢ 𝑎 ∈ V |
5 |
4
|
rabex |
⊢ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ∈ V |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) |
7 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
10
|
reseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( 𝐹 ↾ 𝑎 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝑎 ) ) |
12 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → 𝑎 ⊆ 𝐴 ) |
14 |
13
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ 𝑎 ) = ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( 𝐹 ↾ 𝑎 ) = ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
16 |
|
f1oeq1 |
⊢ ( ( 𝐹 ↾ 𝑎 ) = ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ↔ ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) : 𝑎 –1-1-onto→ 𝐵 ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( 𝐹 ↾ 𝑎 ) = ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) : 𝑎 –1-1-onto→ 𝐵 ) |
18 |
15 17
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) : 𝑎 –1-1-onto→ 𝐵 ) |
19 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝜑 ) |
20 |
13
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑎 ⊆ 𝐴 ) |
21 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ 𝑎 ) |
22 |
20 21
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
23 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
24 |
19 22 23 1
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) ∧ 𝑥 ∈ 𝑎 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝜒 ↔ 𝜓 ) ) |
25 |
6 18 24
|
f1oresrab |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → ( ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ) : { 𝑥 ∈ 𝑎 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
26 |
|
f1oeng |
⊢ ( ( { 𝑥 ∈ 𝑎 ∣ 𝜓 } ∈ V ∧ ( ( 𝑥 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ) : { 𝑥 ∈ 𝑎 ∣ 𝜓 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ≈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
27 |
5 25 26
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ≈ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
28 |
27
|
ensymd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑦 ∈ 𝐵 ∣ 𝜒 } ≈ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ) |
29 |
|
rabexg |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V ) |
30 |
2 29
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V ) |
32 |
|
rabss2 |
⊢ ( 𝑎 ⊆ 𝐴 → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
33 |
13 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
34 |
|
ssdomg |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V → ( { 𝑥 ∈ 𝑎 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) ) |
35 |
31 33 34
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑥 ∈ 𝑎 ∣ 𝜓 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
36 |
|
endomtr |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝜒 } ≈ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ∧ { 𝑥 ∈ 𝑎 ∣ 𝜓 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) → { 𝑦 ∈ 𝐵 ∣ 𝜒 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
37 |
28 35 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) → { 𝑦 ∈ 𝐵 ∣ 𝜒 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
38 |
|
foresf1o |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ∃ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) |
39 |
2 3 38
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑎 ) : 𝑎 –1-1-onto→ 𝐵 ) |
40 |
37 39
|
r19.29a |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝜒 } ≼ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |