Metamath Proof Explorer


Theorem rabid

Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of Quine p. 16. (Contributed by NM, 9-Oct-2003)

Ref Expression
Assertion rabid ( 𝑥 ∈ { 𝑥𝐴𝜑 } ↔ ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 1 abeq2i ( 𝑥 ∈ { 𝑥𝐴𝜑 } ↔ ( 𝑥𝐴𝜑 ) )