Metamath Proof Explorer


Theorem rabid2f

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Revised by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypothesis rabid2f.1 𝑥 𝐴
Assertion rabid2f ( 𝐴 = { 𝑥𝐴𝜑 } ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rabid2f.1 𝑥 𝐴
2 1 abeq2f ( 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
3 pm4.71 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝑥𝐴𝜑 ) ) )
5 2 4 bitr4i ( 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
6 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
7 6 eqeq2i ( 𝐴 = { 𝑥𝐴𝜑 } ↔ 𝐴 = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
8 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
9 5 7 8 3bitr4i ( 𝐴 = { 𝑥𝐴𝜑 } ↔ ∀ 𝑥𝐴 𝜑 )