Step |
Hyp |
Ref |
Expression |
1 |
|
rabid2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
1
|
abeq2f |
⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
3 |
|
pm4.71 |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
5 |
2 4
|
bitr4i |
⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
6 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
7 |
6
|
eqeq2i |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
9 |
5 7 8
|
3bitr4i |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |