Metamath Proof Explorer


Theorem rabidd

Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of Quine p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rabidd.1 ( 𝜑𝑥𝐴 )
rabidd.2 ( 𝜑𝜒 )
Assertion rabidd ( 𝜑𝑥 ∈ { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 rabidd.1 ( 𝜑𝑥𝐴 )
2 rabidd.2 ( 𝜑𝜒 )
3 rabid ( 𝑥 ∈ { 𝑥𝐴𝜒 } ↔ ( 𝑥𝐴𝜒 ) )
4 1 2 3 sylanbrc ( 𝜑𝑥 ∈ { 𝑥𝐴𝜒 } )