Metamath Proof Explorer


Theorem rabidim2

Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion rabidim2 ( 𝑥 ∈ { 𝑥𝐴𝜑 } → 𝜑 )

Proof

Step Hyp Ref Expression
1 rabid ( 𝑥 ∈ { 𝑥𝐴𝜑 } ↔ ( 𝑥𝐴𝜑 ) )
2 1 simprbi ( 𝑥 ∈ { 𝑥𝐴𝜑 } → 𝜑 )