Metamath Proof Explorer


Theorem rabn0

Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabn0 ( { 𝑥𝐴𝜑 } ≠ ∅ ↔ ∃ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rabeq0 ( { 𝑥𝐴𝜑 } = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝜑 )
2 1 necon3abii ( { 𝑥𝐴𝜑 } ≠ ∅ ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
3 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
4 2 3 bitr4i ( { 𝑥𝐴𝜑 } ≠ ∅ ↔ ∃ 𝑥𝐴 𝜑 )