Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999) (Revised by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rabn0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
2 | 1 | necon3abii | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
3 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
4 | 2 3 | bitr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |