Metamath Proof Explorer


Theorem rabnc

Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabnc ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴 ∣ ¬ 𝜑 } ) = ∅

Proof

Step Hyp Ref Expression
1 inrab ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴 ∣ ¬ 𝜑 } ) = { 𝑥𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) }
2 pm3.24 ¬ ( 𝜑 ∧ ¬ 𝜑 )
3 2 rgenw 𝑥𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 )
4 rabeq0 ( { 𝑥𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 ) )
5 3 4 mpbir { 𝑥𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅
6 1 5 eqtri ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴 ∣ ¬ 𝜑 } ) = ∅