Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rabnc | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } | |
2 | pm3.24 | ⊢ ¬ ( 𝜑 ∧ ¬ 𝜑 ) | |
3 | 2 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 ) |
4 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) | |
5 | 3 4 | mpbir | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅ |
6 | 1 5 | eqtri | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = ∅ |