Step |
Hyp |
Ref |
Expression |
1 |
|
rabrabi.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) |
2 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } |
3 |
2
|
eleq2i |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ) |
4 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ) |
5 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
6 |
1
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
7 |
6
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜒 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
9 |
8
|
sbievw |
⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
10 |
4 9
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
11 |
3 10
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ∧ 𝜓 ) ) |
13 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜒 ∧ 𝜓 ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜒 ∧ 𝜓 ) ) ) |
15 |
14
|
rabbia2 |
⊢ { 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜒 ∧ 𝜓 ) } |