| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabrabi.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 2 |  | df-rab | ⊢ { 𝑦  ∈  𝐴  ∣  𝜑 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  𝑥  ∈  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) } ) | 
						
							| 4 |  | df-clab | ⊢ ( 𝑥  ∈  { 𝑦  ∣  ( 𝑦  ∈  𝐴  ∧  𝜑 ) }  ↔  [ 𝑥  /  𝑦 ] ( 𝑦  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 5 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝐴  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 6 | 1 | bicomd | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 7 | 6 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 9 | 8 | sbievw | ⊢ ( [ 𝑥  /  𝑦 ] ( 𝑦  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) | 
						
							| 10 | 3 4 9 | 3bitri | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝜒 ) ) | 
						
							| 11 | 10 | anbi1i | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ∧  𝜓 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜒 )  ∧  𝜓 ) ) | 
						
							| 12 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜒 )  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝜒  ∧  𝜓 ) ) ) | 
						
							| 14 | 13 | rabbia2 | ⊢ { 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ∣  𝜓 }  =  { 𝑥  ∈  𝐴  ∣  ( 𝜒  ∧  𝜓 ) } |