Metamath Proof Explorer


Theorem rabrabiOLD

Description: Obsolete version of rabrabi as of 12-Oct-2024. (Contributed by AV, 2-Aug-2022) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rabrabiOLD.1 ( 𝑥 = 𝑦 → ( 𝜒𝜑 ) )
Assertion rabrabiOLD { 𝑥 ∈ { 𝑦𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜒𝜓 ) }

Proof

Step Hyp Ref Expression
1 rabrabiOLD.1 ( 𝑥 = 𝑦 → ( 𝜒𝜑 ) )
2 1 cbvrabv { 𝑥𝐴𝜒 } = { 𝑦𝐴𝜑 }
3 2 rabeqi { 𝑥 ∈ { 𝑥𝐴𝜒 } ∣ 𝜓 } = { 𝑥 ∈ { 𝑦𝐴𝜑 } ∣ 𝜓 }
4 rabrab { 𝑥 ∈ { 𝑥𝐴𝜒 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜒𝜓 ) }
5 3 4 eqtr3i { 𝑥 ∈ { 𝑦𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜒𝜓 ) }