Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006) (Proof shortened by AV, 26-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsn | ⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 2 | 1 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ) | 
| 3 | 2 | baib | ⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) | 
| 4 | 3 | alrimiv | ⊢ ( 𝐵 ∈ 𝐴 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) | 
| 5 | rabeqsn | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ) |