Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006) (Proof shortened by AV, 26-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | rabsn | ⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
2 | 1 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ) |
3 | 2 | baib | ⊢ ( 𝐵 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) |
4 | 3 | alrimiv | ⊢ ( 𝐵 ∈ 𝐴 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) |
5 | rabeqsn | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) ) | |
6 | 4 5 | sylibr | ⊢ ( 𝐵 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵 } = { 𝐵 } ) |