Metamath Proof Explorer


Theorem rabsn

Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006) (Proof shortened by AV, 26-Aug-2022)

Ref Expression
Assertion rabsn ( 𝐵𝐴 → { 𝑥𝐴𝑥 = 𝐵 } = { 𝐵 } )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
2 1 pm5.32ri ( ( 𝑥𝐴𝑥 = 𝐵 ) ↔ ( 𝐵𝐴𝑥 = 𝐵 ) )
3 2 baib ( 𝐵𝐴 → ( ( 𝑥𝐴𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) )
4 3 alrimiv ( 𝐵𝐴 → ∀ 𝑥 ( ( 𝑥𝐴𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) )
5 rabeqsn ( { 𝑥𝐴𝑥 = 𝐵 } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 = 𝐵 ) ↔ 𝑥 = 𝐵 ) )
6 4 5 sylibr ( 𝐵𝐴 → { 𝑥𝐴𝑥 = 𝐵 } = { 𝐵 } )