Metamath Proof Explorer


Theorem rabsnel

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)

Ref Expression
Hypothesis rabsnel.1 𝐵 ∈ V
Assertion rabsnel ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 rabsnel.1 𝐵 ∈ V
2 1 snid 𝐵 ∈ { 𝐵 }
3 eleq2 ( { 𝑥𝐴𝜑 } = { 𝐵 } → ( 𝐵 ∈ { 𝑥𝐴𝜑 } ↔ 𝐵 ∈ { 𝐵 } ) )
4 2 3 mpbiri ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝐵 ∈ { 𝑥𝐴𝜑 } )
5 elrabi ( 𝐵 ∈ { 𝑥𝐴𝜑 } → 𝐵𝐴 )
6 4 5 syl ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝐵𝐴 )