Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rabsneu | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
2 | 1 | eqeq1i | ⊢ ( { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } = { 𝐴 } ) |
3 | absneu | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
4 | 2 3 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
5 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝐴 } ) → ∃! 𝑥 ∈ 𝐵 𝜑 ) |