Metamath Proof Explorer


Theorem rabsneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabsneu ( ( 𝐴𝑉 ∧ { 𝑥𝐵𝜑 } = { 𝐴 } ) → ∃! 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
2 1 eqeq1i ( { 𝑥𝐵𝜑 } = { 𝐴 } ↔ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } = { 𝐴 } )
3 absneu ( ( 𝐴𝑉 ∧ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥𝐵𝜑 ) )
4 2 3 sylan2b ( ( 𝐴𝑉 ∧ { 𝑥𝐵𝜑 } = { 𝐴 } ) → ∃! 𝑥 ( 𝑥𝐵𝜑 ) )
5 df-reu ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐵𝜑 ) )
6 4 5 sylibr ( ( 𝐴𝑉 ∧ { 𝑥𝐵𝜑 } = { 𝐴 } ) → ∃! 𝑥𝐵 𝜑 )