Step |
Hyp |
Ref |
Expression |
1 |
|
rabsnif.f |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
rabsnifsb |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) |
3 |
1
|
sbcieg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
4 |
3
|
ifbid |
⊢ ( 𝐴 ∈ V → if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = if ( 𝜓 , { 𝐴 } , ∅ ) ) |
5 |
2 4
|
eqtrid |
⊢ ( 𝐴 ∈ V → { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( 𝜓 , { 𝐴 } , ∅ ) ) |
6 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ 𝜑 } = ∅ |
7 |
|
ifid |
⊢ if ( 𝜓 , ∅ , ∅ ) = ∅ |
8 |
6 7
|
eqtr4i |
⊢ { 𝑥 ∈ ∅ ∣ 𝜑 } = if ( 𝜓 , ∅ , ∅ ) |
9 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
10 |
9
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
11 |
10
|
rabeqdv |
⊢ ( ¬ 𝐴 ∈ V → { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ ∅ ∣ 𝜑 } ) |
12 |
10
|
ifeq1d |
⊢ ( ¬ 𝐴 ∈ V → if ( 𝜓 , { 𝐴 } , ∅ ) = if ( 𝜓 , ∅ , ∅ ) ) |
13 |
8 11 12
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( 𝜓 , { 𝐴 } , ∅ ) ) |
14 |
5 13
|
pm2.61i |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( 𝜓 , { 𝐴 } , ∅ ) |