| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
| 2 |
|
sbceq1a |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 3 |
2
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 5 |
4
|
imdistani |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 6 |
5
|
orcd |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 7 |
2
|
biimprd |
⊢ ( 𝑥 = 𝐴 → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
| 8 |
1 7
|
syl |
⊢ ( 𝑥 ∈ { 𝐴 } → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
| 9 |
8
|
imdistani |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 10 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 11 |
10
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 13 |
9 12
|
jaoi |
⊢ ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 14 |
6 13
|
impbii |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 15 |
14
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 16 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝐴 } |
| 18 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 |
| 19 |
17 18
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ∅ |
| 21 |
18
|
nfn |
⊢ Ⅎ 𝑥 ¬ [ 𝐴 / 𝑥 ] 𝜑 |
| 22 |
20 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 23 |
19 22
|
nfor |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 24 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝐴 } ↔ 𝑦 ∈ { 𝐴 } ) ) |
| 25 |
24
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 26 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) |
| 27 |
26
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 28 |
25 27
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) ) |
| 29 |
16 23 28
|
cbvabw |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 30 |
15 29
|
eqtri |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 31 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } |
| 32 |
|
df-if |
⊢ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 33 |
30 31 32
|
3eqtr4i |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) |