Step |
Hyp |
Ref |
Expression |
1 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) |
2 |
|
sbceq1a |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
3 |
2
|
biimpd |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
imdistani |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
6 |
5
|
orcd |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
7 |
2
|
biimprd |
⊢ ( 𝑥 = 𝐴 → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝑥 ∈ { 𝐴 } → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
9 |
8
|
imdistani |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
10 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
11 |
10
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
13 |
9 12
|
jaoi |
⊢ ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
14 |
6 13
|
impbii |
⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
15 |
14
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
16 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝐴 } |
18 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 |
19 |
17 18
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ∅ |
21 |
18
|
nfn |
⊢ Ⅎ 𝑥 ¬ [ 𝐴 / 𝑥 ] 𝜑 |
22 |
20 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
23 |
19 22
|
nfor |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
24 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝐴 } ↔ 𝑦 ∈ { 𝐴 } ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
26 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) |
27 |
26
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
28 |
25 27
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) ) |
29 |
16 23 28
|
cbvabw |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
30 |
15 29
|
eqtri |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
31 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } |
32 |
|
df-if |
⊢ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
33 |
30 31 32
|
3eqtr4i |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) |