Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabsnt.1 | ⊢ 𝐵 ∈ V | |
| rabsnt.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rabsnt | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝜓 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabsnt.1 | ⊢ 𝐵 ∈ V | |
| 2 | rabsnt.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 1 | snid | ⊢ 𝐵 ∈ { 𝐵 } | 
| 4 | id | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } ) | |
| 5 | 3 4 | eleqtrrid | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) | 
| 6 | 2 | elrab | ⊢ ( 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) | 
| 7 | 6 | simprbi | ⊢ ( 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } → 𝜓 ) | 
| 8 | 5 7 | syl | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝐵 } → 𝜓 ) |