Metamath Proof Explorer


Theorem rabss

Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion rabss ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 1 sseq1i ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐵 )
3 abss ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ 𝐵 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) )
4 impexp ( ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
5 4 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
6 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝑥𝐵 ) ) )
7 5 6 bitr4i ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → 𝑥𝐵 ) ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )
8 2 3 7 3bitri ( { 𝑥𝐴𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝜑𝑥𝐵 ) )