Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion rabss2 ( 𝐴𝐵 → { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐵𝜑 } )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
3 2 ss2abdv ( 𝐴𝐵 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
4 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
5 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
6 3 4 5 3sstr4g ( 𝐴𝐵 → { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐵𝜑 } )