Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid axioms. (Revised by TM, 1-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss2 | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 3 | 2 | ss2abdv | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 5 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 6 | 3 4 5 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |