Metamath Proof Explorer


Theorem rabss3d

Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Hypothesis rabss3d.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝑥𝐵 )
Assertion rabss3d ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐵𝜓 } )

Proof

Step Hyp Ref Expression
1 rabss3d.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝑥𝐵 )
2 nfv 𝑥 𝜑
3 nfrab1 𝑥 { 𝑥𝐴𝜓 }
4 nfrab1 𝑥 { 𝑥𝐵𝜓 }
5 simprr ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → 𝜓 )
6 1 5 jca ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) → ( 𝑥𝐵𝜓 ) )
7 6 ex ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐵𝜓 ) ) )
8 rabid ( 𝑥 ∈ { 𝑥𝐴𝜓 } ↔ ( 𝑥𝐴𝜓 ) )
9 rabid ( 𝑥 ∈ { 𝑥𝐵𝜓 } ↔ ( 𝑥𝐵𝜓 ) )
10 7 8 9 3imtr4g ( 𝜑 → ( 𝑥 ∈ { 𝑥𝐴𝜓 } → 𝑥 ∈ { 𝑥𝐵𝜓 } ) )
11 2 3 4 10 ssrd ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐵𝜓 } )