| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabss3d.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 ∈ 𝐵 ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 3 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
| 4 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐵 ∣ 𝜓 } |
| 5 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜓 ) |
| 6 |
1 5
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
| 7 |
6
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 8 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 9 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
| 10 |
7 8 9
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } → 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) ) |
| 11 |
2 3 4 10
|
ssrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |