Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rabssab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
2 | simpr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜑 ) | |
3 | 2 | ss2abi | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝜑 } |
4 | 1 3 | eqsstri | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } |