Metamath Proof Explorer


Theorem rabssab

Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabssab { 𝑥𝐴𝜑 } ⊆ { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 simpr ( ( 𝑥𝐴𝜑 ) → 𝜑 )
3 2 ss2abi { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥𝜑 }
4 1 3 eqsstri { 𝑥𝐴𝜑 } ⊆ { 𝑥𝜑 }