Metamath Proof Explorer


Theorem rabssd

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rabssd.1 𝑥 𝜑
rabssd.2 𝑥 𝐵
rabssd.3 ( ( 𝜑𝑥𝐴𝜒 ) → 𝑥𝐵 )
Assertion rabssd ( 𝜑 → { 𝑥𝐴𝜒 } ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 rabssd.1 𝑥 𝜑
2 rabssd.2 𝑥 𝐵
3 rabssd.3 ( ( 𝜑𝑥𝐴𝜒 ) → 𝑥𝐵 )
4 3 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝜒𝑥𝐵 ) ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ( 𝜒𝑥𝐵 ) )
6 2 rabssf ( { 𝑥𝐴𝜒 } ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( 𝜒𝑥𝐵 ) )
7 5 6 sylibr ( 𝜑 → { 𝑥𝐴𝜒 } ⊆ 𝐵 )