Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabssd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
rabssd.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
rabssd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) → 𝑥 ∈ 𝐵 ) | ||
Assertion | rabssd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | rabssd.2 | ⊢ Ⅎ 𝑥 𝐵 | |
3 | rabssd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) → 𝑥 ∈ 𝐵 ) | |
4 | 3 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜒 → 𝑥 ∈ 𝐵 ) ) ) |
5 | 1 4 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝑥 ∈ 𝐵 ) ) |
6 | 2 | rabssf | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝑥 ∈ 𝐵 ) ) |
7 | 5 6 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ) |