Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabssdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 ∈ 𝐵 ) | |
Assertion | rabssdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 ∈ 𝐵 ) | |
2 | 1 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 ∈ 𝐵 ) ) ) |
3 | 2 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 ∈ 𝐵 ) ) |
4 | rabss | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 ∈ 𝐵 ) ) | |
5 | 3 4 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ 𝐵 ) |