| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-rab | 
							⊢ { 𝑥  ∈  𝑉  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝑉  ∧  𝜑 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							dfpr2 | 
							⊢ { 𝑋 ,  𝑌 }  =  { 𝑥  ∣  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) }  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sseq12i | 
							⊢ ( { 𝑥  ∈  𝑉  ∣  𝜑 }  ⊆  { 𝑋 ,  𝑌 }  ↔  { 𝑥  ∣  ( 𝑥  ∈  𝑉  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							ss2ab | 
							⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑉  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝑉  ∧  𝜑 )  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑥  ∈  𝑉  ∧  𝜑 )  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) )  ↔  ( 𝑥  ∈  𝑉  →  ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							albii | 
							⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝑉  ∧  𝜑 )  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝑉 ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑉  →  ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitr4i | 
							⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝑉  ∧  𝜑 )  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) )  ↔  ∀ 𝑥  ∈  𝑉 ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) )  | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							3bitri | 
							⊢ ( { 𝑥  ∈  𝑉  ∣  𝜑 }  ⊆  { 𝑋 ,  𝑌 }  ↔  ∀ 𝑥  ∈  𝑉 ( 𝜑  →  ( 𝑥  =  𝑋  ∨  𝑥  =  𝑌 ) ) )  |