Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabssrabd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| rabssrabd.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴 ) → 𝜒 ) | ||
| Assertion | rabssrabd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssrabd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | rabssrabd.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴 ) → 𝜒 ) | |
| 3 | 3anan32 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) ) | |
| 4 | 3 2 | sylbir | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
| 5 | 4 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
| 6 | 5 | ss2rabdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| 7 | rabss2 | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| 9 | 6 8 | sstrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |