Metamath Proof Explorer


Theorem rabssrabd

Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypotheses rabssrabd.1 ( 𝜑𝐴𝐵 )
rabssrabd.2 ( ( 𝜑𝜓𝑥𝐴 ) → 𝜒 )
Assertion rabssrabd ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 rabssrabd.1 ( 𝜑𝐴𝐵 )
2 rabssrabd.2 ( ( 𝜑𝜓𝑥𝐴 ) → 𝜒 )
3 3anan32 ( ( 𝜑𝜓𝑥𝐴 ) ↔ ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) )
4 3 2 sylbir ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
5 4 ex ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
6 5 ss2rabdv ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )
7 rabss2 ( 𝐴𝐵 → { 𝑥𝐴𝜒 } ⊆ { 𝑥𝐵𝜒 } )
8 1 7 syl ( 𝜑 → { 𝑥𝐴𝜒 } ⊆ { 𝑥𝐵𝜒 } )
9 6 8 sstrd ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐵𝜒 } )