Metamath Proof Explorer


Theorem rabtru

Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Hypothesis rabtru.1 𝑥 𝐴
Assertion rabtru { 𝑥𝐴 ∣ ⊤ } = 𝐴

Proof

Step Hyp Ref Expression
1 rabtru.1 𝑥 𝐴
2 tru
3 nfcv 𝑥 𝑦
4 nftru 𝑥
5 biidd ( 𝑥 = 𝑦 → ( ⊤ ↔ ⊤ ) )
6 3 1 4 5 elrabf ( 𝑦 ∈ { 𝑥𝐴 ∣ ⊤ } ↔ ( 𝑦𝐴 ∧ ⊤ ) )
7 2 6 mpbiran2 ( 𝑦 ∈ { 𝑥𝐴 ∣ ⊤ } ↔ 𝑦𝐴 )
8 7 eqriv { 𝑥𝐴 ∣ ⊤ } = 𝐴