Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Introduce the Axiom of Power Sets
rabxfr
Metamath Proof Explorer
Description: Membership in a restricted class abstraction after substituting an
expression A (containing y ) for x in the the formula
defining the class abstraction. (Contributed by NM , 10-Jun-2005)
Ref
Expression
Hypotheses
rabxfr.1
⊢ Ⅎ 𝑦 𝐵
rabxfr.2
⊢ Ⅎ 𝑦 𝐶
rabxfr.3
⊢ ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 )
rabxfr.4
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
rabxfr.5
⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 )
Assertion
rabxfr
⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) )
Proof
Step
Hyp
Ref
Expression
1
rabxfr.1
⊢ Ⅎ 𝑦 𝐵
2
rabxfr.2
⊢ Ⅎ 𝑦 𝐶
3
rabxfr.3
⊢ ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 )
4
rabxfr.4
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
5
rabxfr.5
⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 )
6
tru
⊢ ⊤
7
3
adantl
⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 )
8
1 2 7 4 5
rabxfrd
⊢ ( ( ⊤ ∧ 𝐵 ∈ 𝐷 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) )
9
6 8
mpan
⊢ ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜑 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜓 } ) )