Metamath Proof Explorer


Theorem rabxfr

Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005)

Ref Expression
Hypotheses rabxfr.1 𝑦 𝐵
rabxfr.2 𝑦 𝐶
rabxfr.3 ( 𝑦𝐷𝐴𝐷 )
rabxfr.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
rabxfr.5 ( 𝑦 = 𝐵𝐴 = 𝐶 )
Assertion rabxfr ( 𝐵𝐷 → ( 𝐶 ∈ { 𝑥𝐷𝜑 } ↔ 𝐵 ∈ { 𝑦𝐷𝜓 } ) )

Proof

Step Hyp Ref Expression
1 rabxfr.1 𝑦 𝐵
2 rabxfr.2 𝑦 𝐶
3 rabxfr.3 ( 𝑦𝐷𝐴𝐷 )
4 rabxfr.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
5 rabxfr.5 ( 𝑦 = 𝐵𝐴 = 𝐶 )
6 tru
7 3 adantl ( ( ⊤ ∧ 𝑦𝐷 ) → 𝐴𝐷 )
8 1 2 7 4 5 rabxfrd ( ( ⊤ ∧ 𝐵𝐷 ) → ( 𝐶 ∈ { 𝑥𝐷𝜑 } ↔ 𝐵 ∈ { 𝑦𝐷𝜓 } ) )
9 6 8 mpan ( 𝐵𝐷 → ( 𝐶 ∈ { 𝑥𝐷𝜑 } ↔ 𝐵 ∈ { 𝑦𝐷𝜓 } ) )