Step |
Hyp |
Ref |
Expression |
1 |
|
rabxfrd.1 |
⊢ Ⅎ 𝑦 𝐵 |
2 |
|
rabxfrd.2 |
⊢ Ⅎ 𝑦 𝐶 |
3 |
|
rabxfrd.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐴 ∈ 𝐷 ) |
4 |
|
rabxfrd.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
5 |
|
rabxfrd.5 |
⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐶 ) |
6 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) ) |
7 |
|
ibibr |
⊢ ( ( 𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) ) |
8 |
6 7
|
sylib |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) |
10 |
9
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝜒 ) ↔ ( 𝑦 ∈ 𝐷 ∧ 𝜒 ) ) ) |
11 |
4
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ ( 𝐴 ∈ 𝐷 ∧ 𝜒 ) ) |
12 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ↔ ( 𝑦 ∈ 𝐷 ∧ 𝜒 ) ) |
13 |
10 11 12
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
14 |
13
|
rabbidva |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ) |
15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ) ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
17 |
2
|
nfel1 |
⊢ Ⅎ 𝑦 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } |
18 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ) |
19 |
1 16 17 18
|
elrabf |
⊢ ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝐴 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } } ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ) |
20 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ 𝜒 } |
21 |
1 20
|
nfel |
⊢ Ⅎ 𝑦 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } |
22 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
23 |
1 16 21 22
|
elrabf |
⊢ ( 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } } ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |
24 |
15 19 23
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) |
25 |
|
pm5.32 |
⊢ ( ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ↔ ( ( 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ) ↔ ( 𝐵 ∈ 𝐷 ∧ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐷 → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐶 ∈ { 𝑥 ∈ 𝐷 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∈ 𝐷 ∣ 𝜒 } ) ) |