Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | rabxm | ⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ ¬ 𝜑 ) ) | |
2 | exmidd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ∨ ¬ 𝜑 ) ) | |
3 | 1 2 | mprgbir | ⊢ 𝐴 = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } |
4 | unrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } | |
5 | 3 4 | eqtr4i | ⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |