Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabxm | ⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2im | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ ¬ 𝜑 ) → 𝐴 = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } ) | |
| 2 | exmidd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ∨ ¬ 𝜑 ) ) | |
| 3 | 1 2 | mprg | ⊢ 𝐴 = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } |
| 4 | unrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } | |
| 5 | 3 4 | eqtr4i | ⊢ 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) |