Metamath Proof Explorer


Theorem rabxm

Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabxm 𝐴 = ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴 ∣ ¬ 𝜑 } )

Proof

Step Hyp Ref Expression
1 rabid2 ( 𝐴 = { 𝑥𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) } ↔ ∀ 𝑥𝐴 ( 𝜑 ∨ ¬ 𝜑 ) )
2 exmidd ( 𝑥𝐴 → ( 𝜑 ∨ ¬ 𝜑 ) )
3 1 2 mprgbir 𝐴 = { 𝑥𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) }
4 unrab ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴 ∣ ¬ 𝜑 } ) = { 𝑥𝐴 ∣ ( 𝜑 ∨ ¬ 𝜑 ) }
5 3 4 eqtr4i 𝐴 = ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐴 ∣ ¬ 𝜑 } )