| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
radcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 3 |
|
radcnv.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 4 |
|
ssrab2 |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ |
| 5 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 6 |
4 5
|
sstri |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
| 7 |
|
supxrcl |
⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 8 |
6 7
|
mp1i |
⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 9 |
3 8
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 10 |
1 2
|
radcnv0 |
⊢ ( 𝜑 → 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) |
| 11 |
|
supxrub |
⊢ ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ) → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 12 |
6 10 11
|
sylancr |
⊢ ( 𝜑 → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 13 |
12 3
|
breqtrrdi |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 14 |
|
pnfge |
⊢ ( 𝑅 ∈ ℝ* → 𝑅 ≤ +∞ ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝑅 ≤ +∞ ) |
| 16 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 17 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 18 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) ) |
| 19 |
16 17 18
|
mp2an |
⊢ ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞ ) ) |
| 20 |
9 13 15 19
|
syl3anbrc |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |