Metamath Proof Explorer


Theorem radcnvcl

Description: The radius of convergence R of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
radcnv.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
radcnv.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
Assertion radcnvcl ( 𝜑𝑅 ∈ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 pser.g 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) · ( 𝑥𝑛 ) ) ) )
2 radcnv.a ( 𝜑𝐴 : ℕ0 ⟶ ℂ )
3 radcnv.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
4 ssrab2 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ
5 ressxr ℝ ⊆ ℝ*
6 4 5 sstri { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ*
7 supxrcl ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* )
8 6 7 mp1i ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* )
9 3 8 eqeltrid ( 𝜑𝑅 ∈ ℝ* )
10 1 2 radcnv0 ( 𝜑 → 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } )
11 supxrub ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } ) → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) )
12 6 10 11 sylancr ( 𝜑 → 0 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) )
13 12 3 breqtrrdi ( 𝜑 → 0 ≤ 𝑅 )
14 pnfge ( 𝑅 ∈ ℝ*𝑅 ≤ +∞ )
15 9 14 syl ( 𝜑𝑅 ≤ +∞ )
16 0xr 0 ∈ ℝ*
17 pnfxr +∞ ∈ ℝ*
18 elicc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞ ) ) )
19 16 17 18 mp2an ( 𝑅 ∈ ( 0 [,] +∞ ) ↔ ( 𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞ ) )
20 9 13 15 19 syl3anbrc ( 𝜑𝑅 ∈ ( 0 [,] +∞ ) )