| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pser.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | radcnv.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 3 |  | radcnv.r | ⊢ 𝑅  =  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) | 
						
							| 4 |  | radcnvle.x | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 5 |  | radcnvle.a | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑋 ) )  ∈  dom   ⇝  ) | 
						
							| 6 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 7 | 4 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 8 | 6 7 | sselid | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 9 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 10 | 1 2 3 | radcnvcl | ⊢ ( 𝜑  →  𝑅  ∈  ( 0 [,] +∞ ) ) | 
						
							| 11 | 9 10 | sselid | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑅  <  ( abs ‘ 𝑋 ) ) | 
						
							| 13 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑅  ∈  ℝ* ) | 
						
							| 14 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 15 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 16 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 17 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 𝑅  ∈  ( 0 [,] +∞ )  ↔  ( 𝑅  ∈  ℝ*  ∧  0  ≤  𝑅  ∧  𝑅  ≤  +∞ ) ) ) | 
						
							| 18 | 15 16 17 | mp2an | ⊢ ( 𝑅  ∈  ( 0 [,] +∞ )  ↔  ( 𝑅  ∈  ℝ*  ∧  0  ≤  𝑅  ∧  𝑅  ≤  +∞ ) ) | 
						
							| 19 | 10 18 | sylib | ⊢ ( 𝜑  →  ( 𝑅  ∈  ℝ*  ∧  0  ≤  𝑅  ∧  𝑅  ≤  +∞ ) ) | 
						
							| 20 | 19 | simp2d | ⊢ ( 𝜑  →  0  ≤  𝑅 ) | 
						
							| 21 |  | ge0gtmnf | ⊢ ( ( 𝑅  ∈  ℝ*  ∧  0  ≤  𝑅 )  →  -∞  <  𝑅 ) | 
						
							| 22 | 11 20 21 | syl2anc | ⊢ ( 𝜑  →  -∞  <  𝑅 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  -∞  <  𝑅 ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( abs ‘ 𝑋 )  ∈  ℝ* ) | 
						
							| 25 | 13 24 12 | xrltled | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑅  ≤  ( abs ‘ 𝑋 ) ) | 
						
							| 26 |  | xrre | ⊢ ( ( ( 𝑅  ∈  ℝ*  ∧  ( abs ‘ 𝑋 )  ∈  ℝ )  ∧  ( -∞  <  𝑅  ∧  𝑅  ≤  ( abs ‘ 𝑋 ) ) )  →  𝑅  ∈  ℝ ) | 
						
							| 27 | 13 14 23 25 26 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 28 |  | avglt1 | ⊢ ( ( 𝑅  ∈  ℝ  ∧  ( abs ‘ 𝑋 )  ∈  ℝ )  →  ( 𝑅  <  ( abs ‘ 𝑋 )  ↔  𝑅  <  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) ) | 
						
							| 29 | 27 14 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( 𝑅  <  ( abs ‘ 𝑋 )  ↔  𝑅  <  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) ) | 
						
							| 30 | 12 29 | mpbid | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑅  <  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 31 | 27 14 | readdcld | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( 𝑅  +  ( abs ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 32 | 31 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  ℝ ) | 
						
							| 33 |  | ssrab2 | ⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ | 
						
							| 34 | 33 6 | sstri | ⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ* | 
						
							| 35 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 36 | 32 | recnd | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  ℂ ) | 
						
							| 37 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 38 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  0  ∈  ℝ ) | 
						
							| 39 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  0  ≤  𝑅 ) | 
						
							| 40 | 38 27 32 39 30 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  0  <  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 41 | 38 32 40 | ltled | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  0  ≤  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 42 | 32 41 | absidd | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( abs ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) )  =  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 43 |  | avglt2 | ⊢ ( ( 𝑅  ∈  ℝ  ∧  ( abs ‘ 𝑋 )  ∈  ℝ )  →  ( 𝑅  <  ( abs ‘ 𝑋 )  ↔  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  <  ( abs ‘ 𝑋 ) ) ) | 
						
							| 44 | 27 14 43 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( 𝑅  <  ( abs ‘ 𝑋 )  ↔  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  <  ( abs ‘ 𝑋 ) ) ) | 
						
							| 45 | 12 44 | mpbid | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  <  ( abs ‘ 𝑋 ) ) | 
						
							| 46 | 42 45 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( abs ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) )  <  ( abs ‘ 𝑋 ) ) | 
						
							| 47 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑋 ) )  ∈  dom   ⇝  ) | 
						
							| 48 | 1 35 36 37 46 47 | radcnvlem3 | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  seq 0 (  +  ,  ( 𝐺 ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) )  ∈  dom   ⇝  ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑦  =  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) ) | 
						
							| 50 | 49 | seqeq3d | ⊢ ( 𝑦  =  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  =  seq 0 (  +  ,  ( 𝐺 ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) ) ) | 
						
							| 51 | 50 | eleq1d | ⊢ ( 𝑦  =  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  →  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝐺 ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑟  =  𝑦  →  ( 𝐺 ‘ 𝑟 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 53 | 52 | seqeq3d | ⊢ ( 𝑟  =  𝑦  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  =  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 54 | 53 | eleq1d | ⊢ ( 𝑟  =  𝑦  →  ( seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  dom   ⇝  ) ) | 
						
							| 55 | 54 | cbvrabv | ⊢ { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  =  { 𝑦  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑦 ) )  ∈  dom   ⇝  } | 
						
							| 56 | 51 55 | elrab2 | ⊢ ( ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ↔  ( ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  ℝ  ∧  seq 0 (  +  ,  ( 𝐺 ‘ ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 57 | 32 48 56 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ) | 
						
							| 58 |  | supxrub | ⊢ ( ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  }  ⊆  ℝ*  ∧  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ∈  { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) ) | 
						
							| 59 | 34 57 58 | sylancr | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ≤  sup ( { 𝑟  ∈  ℝ  ∣  seq 0 (  +  ,  ( 𝐺 ‘ 𝑟 ) )  ∈  dom   ⇝  } ,  ℝ* ,   <  ) ) | 
						
							| 60 | 59 3 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 )  ≤  𝑅 ) | 
						
							| 61 | 32 27 60 | lensymd | ⊢ ( ( 𝜑  ∧  𝑅  <  ( abs ‘ 𝑋 ) )  →  ¬  𝑅  <  ( ( 𝑅  +  ( abs ‘ 𝑋 ) )  /  2 ) ) | 
						
							| 62 | 30 61 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝑅  <  ( abs ‘ 𝑋 ) ) | 
						
							| 63 | 8 11 62 | xrnltled | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  ≤  𝑅 ) |