| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pser.g | ⊢ 𝐺  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ‘ 𝑛 )  ·  ( 𝑥 ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | radcnv.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 3 |  | psergf.x | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 4 |  | radcnvlem2.y | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 5 |  | radcnvlem2.a | ⊢ ( 𝜑  →  ( abs ‘ 𝑋 )  <  ( abs ‘ 𝑌 ) ) | 
						
							| 6 |  | radcnvlem2.c | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑌 ) )  ∈  dom   ⇝  ) | 
						
							| 7 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 8 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 9 | 1 2 3 | psergf | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) | 
						
							| 10 |  | fvco3 | ⊢ ( ( ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs  ∘  ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) | 
						
							| 12 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 1 2 3 4 5 6 | radcnvlem2 | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( abs  ∘  ( 𝐺 ‘ 𝑋 ) ) )  ∈  dom   ⇝  ) | 
						
							| 14 | 7 8 11 12 13 | abscvgcvg | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝐺 ‘ 𝑋 ) )  ∈  dom   ⇝  ) |