Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
radcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
3 |
|
psergf.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
4 |
|
radcnvlem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
5 |
|
radcnvlem2.a |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) |
6 |
|
radcnvlem2.c |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
9 |
1 2 3
|
psergf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
10 |
|
fvco3 |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
12 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ∈ ℂ ) |
13 |
1 2 3 4 5 6
|
radcnvlem2 |
⊢ ( 𝜑 → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
14 |
7 8 11 12 13
|
abscvgcvg |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |