Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
radcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
3 |
|
radcnv.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
4 |
|
radcnvlt.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
|
radcnvlt.a |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) |
6 |
|
radcnvlt1.h |
⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
7 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
8 |
4
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
9 |
7 8
|
sselid |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
10 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
11 |
1 2 3
|
radcnvcl |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
12 |
10 11
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
13 |
|
xrltnle |
⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑋 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) ) |
14 |
9 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) ) |
15 |
5 14
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) |
16 |
3
|
breq1i |
⊢ ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ) |
17 |
|
ssrab2 |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ |
18 |
17 7
|
sstri |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
19 |
|
supxrleub |
⊢ ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ ( abs ‘ 𝑋 ) ∈ ℝ* ) → ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
20 |
18 9 19
|
sylancr |
⊢ ( 𝜑 → ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
21 |
16 20
|
syl5bb |
⊢ ( 𝜑 → ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑠 ) ) |
23 |
22
|
seqeq3d |
⊢ ( 𝑟 = 𝑠 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) ) |
25 |
24
|
ralrab |
⊢ ( ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
26 |
21 25
|
bitrdi |
⊢ ( 𝜑 → ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) ) |
27 |
15 26
|
mtbid |
⊢ ( 𝜑 → ¬ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
28 |
|
rexanali |
⊢ ( ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ↔ ¬ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
29 |
27 28
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
30 |
|
ltnle |
⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
31 |
8 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
33 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
34 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑋 ∈ ℂ ) |
35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑠 ∈ ℝ ) |
36 |
35
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑠 ∈ ℂ ) |
37 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) < 𝑠 ) |
38 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ∈ ℝ ) |
39 |
34
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
40 |
34
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
41 |
38 39 35 40 37
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 < 𝑠 ) |
42 |
38 35 41
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ≤ 𝑠 ) |
43 |
35 42
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑠 ) = 𝑠 ) |
44 |
37 43
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑠 ) ) |
45 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) |
46 |
1 33 34 36 44 45 6
|
radcnvlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
47 |
1 33 34 36 44 45
|
radcnvlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
48 |
46 47
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
49 |
48
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
50 |
32 49
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
51 |
50
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
52 |
51
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
53 |
29 52
|
mpd |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |