Step |
Hyp |
Ref |
Expression |
1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
2 |
|
radcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
3 |
|
radcnv.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
4 |
|
radcnvlt.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
|
radcnvlt.a |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) |
6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
7 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
8 |
1 2 4
|
psergf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
9 |
|
fvco3 |
⊢ ( ( ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ‘ 𝑘 ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
11 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ∈ ℂ ) |
12 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
13 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) = ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
15 |
14
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑘 ) ) ) ) |
16 |
1 2 3 4 5 15
|
radcnvlt1 |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
17 |
16
|
simprd |
⊢ ( 𝜑 → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
18 |
6 7 10 11 17
|
abscvgcvg |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑋 ) ) ∈ dom ⇝ ) |