| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							raddcn.1 | 
							⊢ 𝐽  =  ( topGen ‘ ran  (,) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 3 | 
							
								2
							 | 
							addcn | 
							⊢  +   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-resscn | 
							⊢ ℝ  ⊆  ℂ  | 
						
						
							| 5 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( ℝ  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( ℝ  ×  ℝ )  ⊆  ( ℂ  ×  ℂ ) )  | 
						
						
							| 6 | 
							
								4 4 5
							 | 
							mp2an | 
							⊢ ( ℝ  ×  ℝ )  ⊆  ( ℂ  ×  ℂ )  | 
						
						
							| 7 | 
							
								2
							 | 
							cnfldtop | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  Top  | 
						
						
							| 8 | 
							
								2
							 | 
							cnfldtopon | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  | 
						
						
							| 9 | 
							
								8
							 | 
							toponunii | 
							⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld )  | 
						
						
							| 10 | 
							
								7 7 9 9
							 | 
							txunii | 
							⊢ ( ℂ  ×  ℂ )  =  ∪  ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							cnrest | 
							⊢ ( (  +   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) )  ∧  ( ℝ  ×  ℝ )  ⊆  ( ℂ  ×  ℂ ) )  →  (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  Cn  ( TopOpen ‘ ℂfld ) ) )  | 
						
						
							| 12 | 
							
								3 6 11
							 | 
							mp2an | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  Cn  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 13 | 
							
								
							 | 
							reex | 
							⊢ ℝ  ∈  V  | 
						
						
							| 14 | 
							
								
							 | 
							txrest | 
							⊢ ( ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( TopOpen ‘ ℂfld )  ∈  Top )  ∧  ( ℝ  ∈  V  ∧  ℝ  ∈  V ) )  →  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ×t  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) )  | 
						
						
							| 15 | 
							
								7 7 13 13 14
							 | 
							mp4an | 
							⊢ ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ×t  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  | 
						
						
							| 16 | 
							
								
							 | 
							tgioo4 | 
							⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							eqtr2i | 
							⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  =  𝐽  | 
						
						
							| 18 | 
							
								17 17
							 | 
							oveq12i | 
							⊢ ( ( ( TopOpen ‘ ℂfld )  ↾t  ℝ )  ×t  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  =  ( 𝐽  ×t  𝐽 )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							eqtri | 
							⊢ ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  =  ( 𝐽  ×t  𝐽 )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1i | 
							⊢ ( ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  ↾t  ( ℝ  ×  ℝ ) )  Cn  ( TopOpen ‘ ℂfld ) )  =  ( ( 𝐽  ×t  𝐽 )  Cn  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 21 | 
							
								12 20
							 | 
							eleqtri | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ax-addf | 
							⊢  +  : ( ℂ  ×  ℂ ) ⟶ ℂ  | 
						
						
							| 23 | 
							
								
							 | 
							ffn | 
							⊢ (  +  : ( ℂ  ×  ℂ ) ⟶ ℂ  →   +   Fn  ( ℂ  ×  ℂ ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							ax-mp | 
							⊢  +   Fn  ( ℂ  ×  ℂ )  | 
						
						
							| 25 | 
							
								
							 | 
							fnssres | 
							⊢ ( (  +   Fn  ( ℂ  ×  ℂ )  ∧  ( ℝ  ×  ℝ )  ⊆  ( ℂ  ×  ℂ ) )  →  (  +   ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ ) )  | 
						
						
							| 26 | 
							
								24 6 25
							 | 
							mp2an | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  | 
						
						
							| 27 | 
							
								
							 | 
							fnov | 
							⊢ ( (  +   ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  ↔  (  +   ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥 (  +   ↾  ( ℝ  ×  ℝ ) ) 𝑦 ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpbi | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥 (  +   ↾  ( ℝ  ×  ℝ ) ) 𝑦 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							ovres | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥 (  +   ↾  ( ℝ  ×  ℝ ) ) 𝑦 )  =  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							mpoeq3ia | 
							⊢ ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥 (  +   ↾  ( ℝ  ×  ℝ ) ) 𝑦 ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							eqtri | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rneqi | 
							⊢ ran  (  +   ↾  ( ℝ  ×  ℝ ) )  =  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							readdcl | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ )  | 
						
						
							| 34 | 
							
								33
							 | 
							rgen2 | 
							⊢ ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( 𝑥  +  𝑦 )  ∈  ℝ  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							rnmposs | 
							⊢ ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( 𝑥  +  𝑦 )  ∈  ℝ  →  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  ⊆  ℝ )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							ax-mp | 
							⊢ ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  ⊆  ℝ  | 
						
						
							| 38 | 
							
								32 37
							 | 
							eqsstri | 
							⊢ ran  (  +   ↾  ( ℝ  ×  ℝ ) )  ⊆  ℝ  | 
						
						
							| 39 | 
							
								
							 | 
							cnrest2 | 
							⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  ∧  ran  (  +   ↾  ( ℝ  ×  ℝ ) )  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) ) )  | 
						
						
							| 40 | 
							
								8 38 4 39
							 | 
							mp3an | 
							⊢ ( (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( TopOpen ‘ ℂfld ) )  ↔  (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) )  | 
						
						
							| 41 | 
							
								21 40
							 | 
							mpbi | 
							⊢ (  +   ↾  ( ℝ  ×  ℝ ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  | 
						
						
							| 42 | 
							
								17
							 | 
							oveq2i | 
							⊢ ( ( 𝐽  ×t  𝐽 )  Cn  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) )  =  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 )  | 
						
						
							| 43 | 
							
								41 31 42
							 | 
							3eltr3i | 
							⊢ ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  ( 𝑥  +  𝑦 ) )  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐽 )  |