Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragcol.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
11 |
|
ragcol.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
|
ragcol.2 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
13 |
|
ragcol.3 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐵 𝐿 𝐷 ) ∨ 𝐵 = 𝐷 ) ) |
14 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
15 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
16 |
1 2 3 4 5 6 8 15 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
17 |
12
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
18 |
1 2 3 4 5 6 8 15 9
|
mircgr |
⊢ ( 𝜑 → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
20 |
1 2 3 4 5 6 7 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
21 |
11 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
22 |
1 4 3 6 8 7 10 14 9 16 2 17 13 19 21
|
lncgr |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
23 |
1 2 3 4 5 6 10 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
24 |
22 23
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |