Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragflat.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
11 |
|
ragflat.2 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐶 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
17 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) |
18 |
1 2 3 4 5 13 16 17 14
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ∈ 𝑃 ) |
19 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
20 |
1 2 3 4 5 13 16 17 14
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) = ( 𝐶 − 𝐴 ) ) |
21 |
1 2 3 13 16 18 16 14 20
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
22 |
1 2 3 4 5 13 14 15 16
|
israg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
23 |
19 22
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
24 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
25 |
1 2 3 4 5 13 15 24 16
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐴 𝐶 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
27 |
1 2 3 4 5 13 14 16 15 26
|
ragcom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ 𝐵 𝐶 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
29 |
1 2 3 4 5 13 15 24 16
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) 𝐼 𝐶 ) ) |
30 |
1 2 3 13 25 15 16 29
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
31 |
1 4 3 13 16 25 15 30
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ∈ ( 𝐶 𝐿 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ∨ 𝐶 = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
32 |
1 2 3 4 5 13 15 16 14 25 27 28 31
|
ragcol |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) 𝐶 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
33 |
1 2 3 4 5 13 25 16 14
|
israg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 〈“ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) 𝐶 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) ) ) |
34 |
32 33
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − 𝐴 ) = ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) − ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
35 |
1 2 3 13 25 14 25 18 34
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
36 |
21 23 35
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − 𝐶 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
37 |
1 2 3 4 5 13 18 15 16
|
israg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 〈“ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − 𝐶 ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
38 |
36 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 〈“ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
39 |
1 2 3 4 5 13 16 17 14
|
mirbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
40 |
1 2 3 13 18 16 14 39
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) ) |
41 |
1 2 3 4 5 13 14 15 16 18 19 38 40
|
ragflat2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 = 𝐶 ) |
42 |
12 41
|
pm2.61dane |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |