Metamath Proof Explorer


Theorem ragflat3

Description: Right angle and colinearity. Theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)

Ref Expression
Hypotheses israg.p 𝑃 = ( Base ‘ 𝐺 )
israg.d = ( dist ‘ 𝐺 )
israg.i 𝐼 = ( Itv ‘ 𝐺 )
israg.l 𝐿 = ( LineG ‘ 𝐺 )
israg.s 𝑆 = ( pInvG ‘ 𝐺 )
israg.g ( 𝜑𝐺 ∈ TarskiG )
israg.a ( 𝜑𝐴𝑃 )
israg.b ( 𝜑𝐵𝑃 )
israg.c ( 𝜑𝐶𝑃 )
ragflat3.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
ragflat3.2 ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
Assertion ragflat3 ( 𝜑 → ( 𝐴 = 𝐵𝐶 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 israg.p 𝑃 = ( Base ‘ 𝐺 )
2 israg.d = ( dist ‘ 𝐺 )
3 israg.i 𝐼 = ( Itv ‘ 𝐺 )
4 israg.l 𝐿 = ( LineG ‘ 𝐺 )
5 israg.s 𝑆 = ( pInvG ‘ 𝐺 )
6 israg.g ( 𝜑𝐺 ∈ TarskiG )
7 israg.a ( 𝜑𝐴𝑃 )
8 israg.b ( 𝜑𝐵𝑃 )
9 israg.c ( 𝜑𝐶𝑃 )
10 ragflat3.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
11 ragflat3.2 ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
12 6 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG )
13 9 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐶𝑃 )
14 8 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵𝑃 )
15 7 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴𝑃 )
16 10 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
17 simpr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 )
18 17 neqned ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴𝐵 )
19 11 adantr ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
20 1 4 3 12 15 14 13 19 colrot1 ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) )
21 1 2 3 4 5 12 15 14 13 13 16 18 20 ragcol ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ⟨“ 𝐶 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
22 1 2 3 4 5 12 13 14 15 21 ragtriva ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐶 = 𝐵 )
23 22 ex ( 𝜑 → ( ¬ 𝐴 = 𝐵𝐶 = 𝐵 ) )
24 23 orrd ( 𝜑 → ( 𝐴 = 𝐵𝐶 = 𝐵 ) )