Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragflat3.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
11 |
|
ragflat3.2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
13 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
18 |
17
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ≠ 𝐵 ) |
19 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
20 |
1 4 3 12 15 14 13 19
|
colrot1 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) ) |
21 |
1 2 3 4 5 12 15 14 13 13 16 18 20
|
ragcol |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 〈“ 𝐶 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
22 |
1 2 3 4 5 12 13 14 15 21
|
ragtriva |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = 𝐵 ) → 𝐶 = 𝐵 ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐶 = 𝐵 ) ) |
24 |
23
|
orrd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐵 ) ) |