Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragmir.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
11 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
12 |
1 2 3 4 5 6 8 11 9
|
mirmir |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = 𝐶 ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) = ( 𝐴 − 𝐶 ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
15 |
10 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
16 |
13 15
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
17 |
1 2 3 4 5 6 8 11 9
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
18 |
1 2 3 4 5 6 7 8 17
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) ) |
19 |
16 18
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |