Metamath Proof Explorer
Description: Trivial right angle. Theorem 8.8 of Schwabhauser p. 58.
(Contributed by Thierry Arnoux, 3-Sep-2019)
|
|
Ref |
Expression |
|
Hypotheses |
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
|
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
ragtriva.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
|
Assertion |
ragtriva |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
ragtriva.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
11 |
1 2 3 4 5 6 8 7 9
|
ragtrivb |
⊢ ( 𝜑 → 〈“ 𝐵 𝐴 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
1 2 3 4 5 6 8 7 7 11
|
ragcom |
⊢ ( 𝜑 → 〈“ 𝐴 𝐴 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
13 |
1 2 3 4 5 6 7 7 8 12 10
|
ragflat |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |