Metamath Proof Explorer


Theorem ragtriva

Description: Trivial right angle. Theorem 8.8 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019)

Ref Expression
Hypotheses israg.p 𝑃 = ( Base ‘ 𝐺 )
israg.d = ( dist ‘ 𝐺 )
israg.i 𝐼 = ( Itv ‘ 𝐺 )
israg.l 𝐿 = ( LineG ‘ 𝐺 )
israg.s 𝑆 = ( pInvG ‘ 𝐺 )
israg.g ( 𝜑𝐺 ∈ TarskiG )
israg.a ( 𝜑𝐴𝑃 )
israg.b ( 𝜑𝐵𝑃 )
israg.c ( 𝜑𝐶𝑃 )
ragtriva.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
Assertion ragtriva ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 israg.p 𝑃 = ( Base ‘ 𝐺 )
2 israg.d = ( dist ‘ 𝐺 )
3 israg.i 𝐼 = ( Itv ‘ 𝐺 )
4 israg.l 𝐿 = ( LineG ‘ 𝐺 )
5 israg.s 𝑆 = ( pInvG ‘ 𝐺 )
6 israg.g ( 𝜑𝐺 ∈ TarskiG )
7 israg.a ( 𝜑𝐴𝑃 )
8 israg.b ( 𝜑𝐵𝑃 )
9 israg.c ( 𝜑𝐶𝑃 )
10 ragtriva.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
11 1 2 3 4 5 6 8 7 9 ragtrivb ( 𝜑 → ⟨“ 𝐵 𝐴 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
12 1 2 3 4 5 6 8 7 7 11 ragcom ( 𝜑 → ⟨“ 𝐴 𝐴 𝐵 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
13 1 2 3 4 5 6 7 7 8 12 10 ragflat ( 𝜑𝐴 = 𝐵 )