Metamath Proof Explorer


Theorem ragtrivb

Description: Trivial right angle. Theorem 8.5 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses israg.p 𝑃 = ( Base ‘ 𝐺 )
israg.d = ( dist ‘ 𝐺 )
israg.i 𝐼 = ( Itv ‘ 𝐺 )
israg.l 𝐿 = ( LineG ‘ 𝐺 )
israg.s 𝑆 = ( pInvG ‘ 𝐺 )
israg.g ( 𝜑𝐺 ∈ TarskiG )
israg.a ( 𝜑𝐴𝑃 )
israg.b ( 𝜑𝐵𝑃 )
israg.c ( 𝜑𝐶𝑃 )
Assertion ragtrivb ( 𝜑 → ⟨“ 𝐴 𝐵 𝐵 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 israg.p 𝑃 = ( Base ‘ 𝐺 )
2 israg.d = ( dist ‘ 𝐺 )
3 israg.i 𝐼 = ( Itv ‘ 𝐺 )
4 israg.l 𝐿 = ( LineG ‘ 𝐺 )
5 israg.s 𝑆 = ( pInvG ‘ 𝐺 )
6 israg.g ( 𝜑𝐺 ∈ TarskiG )
7 israg.a ( 𝜑𝐴𝑃 )
8 israg.b ( 𝜑𝐵𝑃 )
9 israg.c ( 𝜑𝐶𝑃 )
10 eqid ( 𝑆𝐵 ) = ( 𝑆𝐵 )
11 1 2 3 4 5 6 8 10 mircinv ( 𝜑 → ( ( 𝑆𝐵 ) ‘ 𝐵 ) = 𝐵 )
12 11 oveq2d ( 𝜑 → ( 𝐴 ( ( 𝑆𝐵 ) ‘ 𝐵 ) ) = ( 𝐴 𝐵 ) )
13 12 eqcomd ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴 ( ( 𝑆𝐵 ) ‘ 𝐵 ) ) )
14 1 2 3 4 5 6 7 8 8 israg ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐵 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 𝐵 ) = ( 𝐴 ( ( 𝑆𝐵 ) ‘ 𝐵 ) ) ) )
15 13 14 mpbird ( 𝜑 → ⟨“ 𝐴 𝐵 𝐵 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )