Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
11 |
1 2 3 4 5 6 8 10
|
mircinv |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐵 ) = 𝐵 ) |
12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐵 ) ) ) |
14 |
1 2 3 4 5 6 7 8 8
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐴 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝐵 ) ) ) ) |
15 |
13 14
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐵 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |