Metamath Proof Explorer


Theorem ral2imi

Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006) Allow shortening of ralim . (Revised by Wolf Lammen, 1-Dec-2019)

Ref Expression
Hypothesis ral2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ral2imi ( ∀ 𝑥𝐴 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ral2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 1 imim3i ( ( 𝑥𝐴𝜑 ) → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
4 3 al2imi ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( ∀ 𝑥 ( 𝑥𝐴𝜓 ) → ∀ 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-ral ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥 ( 𝑥𝐴𝜒 ) )
7 4 5 6 3imtr4g ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )
8 2 7 sylbi ( ∀ 𝑥𝐴 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜒 ) )