Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | ralab | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | df-ral | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ) | |
3 | df-clab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 ) | |
4 | 1 | sbievw | ⊢ ( [ 𝑥 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
5 | 3 4 | bitri | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜓 ) |
6 | 5 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) |
7 | biid | ⊢ ( ( 𝜓 → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) | |
8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) |
9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
10 | 2 9 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |