Metamath Proof Explorer


Theorem ralab

Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)

Ref Expression
Hypothesis ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
Assertion ralab ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) )
3 df-clab ( 𝑥 ∈ { 𝑦𝜑 } ↔ [ 𝑥 / 𝑦 ] 𝜑 )
4 1 sbievw ( [ 𝑥 / 𝑦 ] 𝜑𝜓 )
5 3 4 bitri ( 𝑥 ∈ { 𝑦𝜑 } ↔ 𝜓 )
6 5 imbi1i ( ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) ↔ ( 𝜓𝜒 ) )
7 biid ( ( 𝜓𝜒 ) ↔ ( 𝜓𝜒 ) )
8 6 7 bitri ( ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) ↔ ( 𝜓𝜒 ) )
9 8 albii ( ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) ↔ ∀ 𝑥 ( 𝜓𝜒 ) )
10 2 9 bitri ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓𝜒 ) )