Step |
Hyp |
Ref |
Expression |
1 |
|
ralab2.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜓 ) ) |
3 |
|
nfsab1 |
⊢ Ⅎ 𝑦 𝑥 ∈ { 𝑦 ∣ 𝜑 } |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝜓 |
5 |
3 4
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜓 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 → 𝜒 ) |
7 |
|
eleq1ab |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) ) |
8 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) ) |
10 |
9 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
11 |
5 6 10
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜓 ) ↔ ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |
12 |
2 11
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |