Description: Obsolete version of ralab as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralabOLD | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab.1 | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 1 | elab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜓 ) |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ 𝜑 } → 𝜒 ) ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |
| 7 | 2 6 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ 𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓 → 𝜒 ) ) |