Metamath Proof Explorer


Theorem ralabOLD

Description: Obsolete version of ralab as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
Assertion ralabOLD ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) )
3 vex 𝑥 ∈ V
4 3 1 elab ( 𝑥 ∈ { 𝑦𝜑 } ↔ 𝜓 )
5 4 imbi1i ( ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) ↔ ( 𝜓𝜒 ) )
6 5 albii ( ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } → 𝜒 ) ↔ ∀ 𝑥 ( 𝜓𝜒 ) )
7 2 6 bitri ( ∀ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∀ 𝑥 ( 𝜓𝜒 ) )