Metamath Proof Explorer


Theorem ralanid

Description: Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion ralanid ( ∀ 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ibar ( 𝑥𝐴 → ( 𝜑 ↔ ( 𝑥𝐴𝜑 ) ) )
2 1 bicomd ( 𝑥𝐴 → ( ( 𝑥𝐴𝜑 ) ↔ 𝜑 ) )
3 2 ralbiia ( ∀ 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝐴 𝜑 )