Metamath Proof Explorer


Theorem ralbi

Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)

Ref Expression
Assertion ralbi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 ral2imi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 𝜓 ) )
3 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
4 3 ral2imi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜑 ) )
5 2 4 impbid ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜓 ) )