Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
2 | 1 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
3 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
4 | 3 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
5 | 2 4 | impbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |